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The choice of parameters in mass servicing systems is commonly based on the average 
characteristics of the flow of calls. The probability with which the anaryzed system will 

be performing its task is’then unknown. 
A statement of the problem is set forth below. It is required to determine the minimum 

possible efficiency of the system which will assure with a given probability that the time 
spent by any customer coming in during the operation of the system will not exceed a given 
value. A solution of the problem is obtained for an ordinary flow of independent, standard 
size calls. An example of the computation is given for the case of a steady flow of calls. 

1. Statement ol the problem. A single-line mass servicing system operating 

during time T is considered. The efficiency of the system is characterized by the time T 

spent in attending to a standard size call. The system attends to the calls one at a time, in 

the order of their arrival. On finding the system engaged, an arriving customer takes its 

place in a quene and waits until the preceding customer has been attended to (the queue is 

loss-free). The interval of time between the instant of arrival of a customer and the instant 

of completion is called the time spent by a customer. All the calls are presumed to be of 

standard size. 

In order to characterize the 

notation, in accordance with [l P 

recess of arrival of calls, let us introduce the following 

: uk (t, At) is the probability of receiving k calls during the 

interval (I, t + AZ 1 is the probability of receiving k calls during the interval (t, t + At); 
w (t, At) = 1 - u (t, At) is the probability of receiving at least one call during the interval 

(t, t + At); +(cr. iit, = 1 - w. (t; At) - v1 (r , At) is the probability of receiving at least two 

calls doring the interval (t , t + At 1. Two hypothesis are adopted regarding the cbuacteris- 

tics of the flow of calls [l and 21. 
The first hypotheses relates to the ordinariness of the flow 

lim !l!i5_3 = 0 

At-o *’ (1.1) 

i.e. the probability of receiving at least two calls during an interval of length At is infinite 

ly small compared with At, when AC + 0. 

The second hypothesis is that of independence: for any L E (0, Tl and any At > 0 the 

probability vL (t, At) is independent of the number of incoming calls during the preceding 

interval (0, I), i.e. the unconditional probability uy (t, A C) coincides with the conditional 

probability of receiving k calls during the interval (t , 8 + At) for any assumptions regarding 

the arrival of calls during the interval (0, t). 

We assume that the so-called call flow parameter [I and 21 ia known 
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1 (t) = lim !f%&!!! 
At-r0 

(1.2) 

According to the above assumptions, A(t) coincidee with the intensity of flow (defined 
as the mathematical expectation of the nnmber of calls per unit time). Therefore, the aver- 
age namber <n> of calls during tima ?’ will be 

(n) = T* (t) dt (1.3) 
0 

The probability of receiving k calls daring the interval (t, z + At) can be expressed in 
terms of the flow parameter as foIlows: 

vy (t, At) = & [A (t +.At) - A (t)]‘e-1” (:+*eA (‘1’ (1.4) 
i 

( 
k=0,1,2 ,..., A(t) = \ 5 (t) dt) 

0’ 

The final formulation of the problem is as follows. The time of the aperation of the sys- 
tern Ti the intensity of the call flow h(t) when 0 S t S T, the maximum permissible call 

waiting time t+ and the probability R that the service will be completed are given, and we 

must find the minimum efficiency of the system (maximum time T) which will ensure with 

the probability R that no call received during time T will be kept waiting longer thsn t+. 

2. The expected arrival law. Let us denote by v(t) the total number of custo- 

mers arrived during the interval (0, t) regardless of whether they have been served or not. 
This is a random function, which can vary from one customer to the next. 

We shall now set an intermediary problem relating to the constraction of a nonrandom, 
piece-wise constant nondecreasing function n (t) with integer values n, 

n(t) = nj whentj<t<tj+l; i=O, i,...,m tn jb nj+l. tO=O, t,n+l=T) (2.1) 

which will, with the given probability R, limit from above all the occurrences of.v0) over 

the entire time interval (0, 27. The choice of the output of the system by this rule, n ItI will 
ensure with the probability R that all the customers V(t) will be served, whilst the customer 

waiting time will not exceed a given value. 

* Let us solve the inverse problem. Let the rule (2.1) be given (i.e. the instants C, , the 
values nI - n,_t and the number m of jnmps be given). We shall find what is the probability 

that the inequality 

v 0) < ?z (09 t E IO, Tl (2.2) 
holds. 

Function n (t) ia piece-wise constant (2.11, therefore the inequality (2.2) is equivalent to 

the following system of inequalities 

vttj -WG)_, (j=i,...rm+i; nj,+<nj) (2.3) 

Let us denote by A an event, which takes place when the system of ineqnalities (2.3) 

holds. Let us aloo introduce the events A u,__ I 

ties 
-WI 

which occur when the system of eqnali- 

holds. 

y ('j -O)=kfil (j=i,. . .,m+ i; ki-l6kj) (2.4) 

If two sete of number0 Vr,, k I ,..., k,) and (ko: k 1: . . . . k, ‘) do not coincide, (i.e. at 

least one of the equalities kj = k,‘, j = 0, l,..., m doee not hold), then the events Aka,__.km 

and A k,‘k,‘...k, are not simultaneous. The event A is represented in the form of the union 

of these events for the various sets UC,, k 1,..., km) satisfying the inequalities 

kj<njlkj>ki_1ti=O,f,-.., m; k-1=0) 
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A= IJ Ak&...km 
kj-lU;jCnj 

(f--O, l,_..,na; k-,=0) W) 

Hence, the probability of the event A is equal to the sum of probabilities of the events 

A b,k,...km for all the indicated sets @q,, kt,..., k,,,) 

P(A)= c 
k+l GkjOj 

’ t &k,...k,} (i=o, lr;..,m;k_l=O) (2.6) 

since the events A k&,...k, are not simultaneous (see, for example, 131). 
We say that event A k&..l:, takes place when (or + 1) independent events occur simul- 

taneously (in accordance with the independence hypothesis) 

v (‘j+t - 0) - v Qj + 0) = kj - kj_t o’=o, f,. . .* na; k_t=o) (2.7) 

The probability of each of them is u,.. . 

ity multiplication rule [$I 
*.,~j_1 @j* fj+l 

- tj) and, therefore, by the probabil- 

Substituting consecutively (1.4) into (2.8) (when k = k, - kj_l, t = C, , At = 8,+1 - :,I 
and (2.8) into (2.6), we obtain au expression for the required probability 

Here 

9+1 
“Aj = I * k(t)&, (n) = A (T) = 

.‘r 

&=U, to = 0. tm+L= T (2.10) 

&=o 

Thus in the subsequent solution of the problem the values L I s,, and m, determining the 
expected arrival mle n (t), must be chosen that the condition P Al >,R is satisfied. t 

3. The mlaimum efficiency of the system. Up to the time:, v(t) calls 

have a&red; up to that instant the system can attend to t/~ calls (7 being the time requi- 
red to attend to une calf). The call waiting time will not exceed tu if the solution set of 

‘V(t) is situated on or below the line 

1 (Q = (3 -I- t*) / r > v (Gt t E IO, Tl (3.4) 
This is clear from geometrical considerations (Fig. 1). Consequently, only those fanc- 

tions (2.1) which satisfy the condition (3.1) can be considered as the expected rules n (t). 

To simplify the process of constructing the expected call arrival ru)e, let us pass on 

from the problem of finding the minimum efficiency of the system when the probability of 

the solution occurring is fixed, to the reciprocal problem. Let us assume the efficiency of 

the system to be given and seek a rule n (t) which will assure the maximum probability R. 
Let us compare the probabilities of occurrence for two rules k” (g) and nc2)(t) such that 

n(l) (f) > n(“) (t) 

t E lo* Tl 
(3 4 

One can at once draw a conclusion with regard to the probabilities of their occurrence 
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P {n(l) (q > v (0, tE[O, Tf)>P(n(2)ft)>v(Q, tE [O. TII (3.31 

since all the situations favorable to ths sec- 
ond event are also favorable to the first, but 

_*-____--- there still remain alternatives which are fav- 
orable to the first event only. 

lJ___________ Thus, the rule n * (t), assuring the maximum 
probability of occurrence and satisfying the 
constraint (3.1) with regard to the waiting time 
is constructed from the condition (Fig. 1) 

, n+ G) = max (0.1, 2, . . .) \< (t + t&r, 

n* (7’) < T/t (3.4) 
Hence the levels n,, the instants tl, and 

the number m of jumps, determining the expec- 

Fig. 1 ted rule (2.1) will be: 

no = E (&Jr), % = no + i. tj=(no+j)r---t* (j=f,..*,ztqa 

m = E (T/T) - no (3.5) 

Here E (tr /7) and E (T/r) denote the integral part of the numbers t+/T and T/T (the 
largest integer not exceeding the given number), 

Substituting (3.5) into (2.9) and (2.10), we obtain an expression (the efficiency of the sys- 
tem, characterized by 7, being given) for the maximum probability of occurrence of the sol- 

w-1) --l. 

AA 0 = I ‘h(f)&, An, = jk(f)df (3.6) 
0 f~+w+-t* 

Ahj-il[(n,+j)T 
T 

--t,+Eldi (i=i,...,m-I), <n) =I: j h(t)& 

0 0 

no = E(t*/q, m+7(T/r)--no, kl=O 

The derived formulas fully solve the problem; which is the reciprocal of the original one. 
They can also be regarded as an implicit expression of the m~imum efficiency of the system, 
characterized by the time 7 of attending to a single call, by means of the probability of OC- 
currence R in the original problem 

4. Stationary arrival flow. Let us consider the case of a stationary arrival flow 
1 (t) G A,, tE K4 r1 (4.1) 

Then the integrals (3.7) will be: 
A&= ATO/% (A-G=*+EI~,/~--~,/T) f4.3 

AAj=f/t (i=i,...,m--i), <n) = WI’ 

AA, = AT,/x (ATE= T/r - E P’ 1~) + W) 
Here 1: denotes the dimensionless efficiencv of the svstem 

(4.3) 

which is the ratio of the number of calla which can be serviced during time T to the mathe- 
matical expectatiou of the number of calls received during that time. 

Substituting relations (4.2) into (3.6) we obtain the following expression for the probability 
of occurrence of the solution 
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(4.4) 

Let us compute the first (m - 1) sums in ko,..., km,l, having written for them the recur- 

rent relations 

do(r) _ ATO’ 
mio (n,, r) 

s,(q) 
mln (n+j, r) 

--a-- 
s,fr) = 

2; 
(0 = c__ P’ ' .I 'j+l 

q=. P-QY 2 

,7.(q) 
1 (4.5) 

P==o 
(r - 4)f 

(r=O, I,..., not-j; i=i ,..., m-3) 

Making use of the method of complete induction we obtain explicit expressions for the 
sums introduced: 

.$.(r) ~ + 
I 

(i -t ATOY 

Fhen r=no-f-I,..., no-l-i (i = 1. . . ., nz --- 1) 

r-‘-1 
s.(r) = 

(I - no - 1 + Ara)’ 

r 
+ (i -+ AT~)~ - (i $- no + 1 - r) $ (i-t “‘i:: i ‘) 

‘II 
I=*1 

. s 

The probability K can, in accordance with (4.4) and (4.5) be written down in the form 

(km = 4, k,_l = r) 

R = e-f”) 2 Z-Q 

q=o 

(p = min [no + m - 1, q]) (4.7) 

Substituting here the expression for s~~‘t from (4.6) and summing the positive terms in r, 

we obtain 

R=e-(“> 

(k - 1 -f- Ar,)“o+” 

(%+k)(no+k--I). .(no+I) 1 (4.8) 

where we assume that (rn - m) (m - rn)*’ = 1, for i = j = k = m. 
If the maximum permissible weiting time is zero (t+ = 0, no = 0, ,l7-o = l), the sum in k 

can be computed 

and then also the sum in j 

(4.9) 

(4.10) 

The final expression for the probability in this case is as follows: 
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(4.11) 

The probability (4.8) is determined by three dimensionless quantities 

<fl) = IaT, z= i/(&T), 0 = kaf, (4.12) 

namely, by the mathematical expectation of the number of calls <n > , the dimensionless 
efficiency of the system x, and tbe dimensionless waiting time Q (characterized by the 
mathematical number of calls during the maximum permissible waiting time). The parameters 

so, ATo.m, 
(4.2)) 

and Arm in (4.8) can be expressed in terms of <n>, x and o (see (3.7) and 

? 
no = ,rj (a,~), AT,, = i + E (ox) - ox (4.13) 

m = E (<n> z) - E (a~). AT,,, = (n>t - E (<n> 2) i- @t 

For large values of m the oomputations by Formula (4.8) are cumbersome. However, au 
asymptotic formula can be derived in this instance. 

Let us introduce the following notation for the sum in k and the triple sum from (4.8) 

sj = (m _ i) 5 (n, - kP1 (k - 1 $- A~a)‘b+~ 

k=l (i -0 (no -I-k) (no + k - 1) . . . (no + 1) 
(4.14) 

then (4.8) can be written in the form 

=+m 
fi = e-ts> 

IT, 
<njq 

Q-o -j$- 
-- 

noi* J 
(4.15) 

Let ua change the summation order in the expression (4.14) for Q and introduce a new 
summation index 2 = i - j 

(4.16) 

Furthermore, in order to simplify the operations let ua consider the case <n>x = E (<n>z), 
for which A T,,, /r = o and m = <n > z - no (See (4.13)). We shall express the sum in 1 in 
(4.16) in the exponential form (with index Q) 

(4.17) 

Here R 
mula as 

m_,(o) is the remainder term of the expansion, determined by the Lagrange for- 

R a,_j lo) = mm-j+l _ e”em-i 
(m--i-+1)1 

lo <em-j < i, (4.18) 

We shall represent the sum 3, from (4.14) in the powers of (<n>)x) substitutingm = <n>x - 

-no 

sj=a,(<n) d+ 

0’ - j)l 
-f-a* (<n> +. . . _fak (cn) z)‘-” 

- (i- 2)f (i - W 

+_. . . +aj 
(4.19) 

The coefficients ua are independent of j and are 

ATas*+t 
at = - 

(4 + ATE)““* Are”‘+ 1 (no + 2) 
(no-t- 1) 1 a2 = (no+-(no - no+1 *...I 
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k 

Qk = (no + k) 2 (_p ll;;-$-’ (I- 1 + *TOI n,+l 
(4.20) 

1x1 
(noi-l).~.(~o+~) 

(k=l,...,m) 

Let us substitute Expressions (4.17) and (4.19) into (4.16). Changing the snmmstlon OP 
der snd replacing j by a new summation index q = j - k, we obtain 

(4.21) 

Let us express the first sum in q in (4.21) analogously to (4.17) and (4.18) 
m-k 

2 OOQ - e(“> - R”,_k (00) 
q’-. -7 - 

(4.22) 

Then Expression (4.20) will have the form 
m m m m-k 

Substituting (4.23) into (4.15) and expressing the sum in q in (4.15) in its exponential 
form, we obtain 

Now let <n> >, 1 and z >> 1. Then 

RZL-((g+$+...) 
no! 2% 

Here a 1, a 2,... are given by Formulas (4.20). 

(42.5) 

Fig. 2 Fig. 3 

Thus, in the limit case considered above the probability R ceases to depend on <n>. 
This is illustrated in Fig. 2, showing the relation R (x) for various values of <II>, when 
w = 0. The asymptotic formula (4.25) has the form R = 1 - l/x in this instance. 

The effect of the waiting time w on the probability R can be seen in Fig. 3. When o in- 

creases, and the efficiency x of the system remains unchanged, the probability R increases 
substantially. 
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